Derivation of continuous explicit two-step Runge–Kutta methods of order three
نویسندگان
چکیده
منابع مشابه
Exponentially Fitted Fifth-Order Two-Step Peer Explicit Methods
The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with dimension six. Finally, som...
متن کاملExplicit Two-Step Methods for Second-Order Linear IVPs
we present a new type of method for the integration of systems of linear inhomogeneous initial value problems with constant coefficients. Our methods are of hybrid explicit Numerov type. The methods are constructed without the intermediate use of high accuracy interpolatory nodes, since only the Taylor expansion at the internal points is needed. Then we derive the order conditions taking advant...
متن کاملEffective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملDerivation of Efficient, Continuous, Explicit Runge-Kutta Methods
Continuous Explicit Runge-Kutta methods with the minimal number of stages are considered. These methods are continuously diierentiable if and only if one of the stages is the FSAL evaluation. A characterization of a subclass of these methods is developed for order 3,4 and 5. It is shown how the free parameters of these methods can be used either to minimize the continuous truncation error coeec...
متن کاملHigh Order Explicit Two - Step Runge - Kutta
In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2007
ISSN: 0377-0427
DOI: 10.1016/j.cam.2006.02.056